The point on the straight line $3x+4y = 8,$ which is closest to the origin is : |
$\left(\frac{13}{24}, \frac{17}{24}\right)$ $\left(\frac{24}{25}, \frac{32}{25}\right)$ $\left(\frac{5}{24}, \frac{7}{24}\right)$ $\left(1, \frac{5}{4}\right)$ |
$\left(\frac{24}{25}, \frac{32}{25}\right)$ |
The correct answer is Option (2) → $\left(\frac{24}{25}, \frac{32}{25}\right)$ Perpendicular distance from a point $(x_0,y_0)$ is, Distance = $\frac{|(Ax_0+By_0+C)|}{\sqrt{A^2+B^2}}$ line: $Ax+By+C$ $x=x_0-A\frac{Ax_0+By_0+C}{A^2+B^2},y=y_0-B\frac{Ax_0+By_0+C}{A^2+B^2}$ $Ax_0+By_0+C=3.0+4.0-8=-8$ $A^2+B^2=3^2+4^2=25$ $∴x=0.3(\frac{-8}{25})=\frac{24}{25}$ $y=0-4(\frac{-8}{25})=\frac{32}{25}$ |