If the mean and variance of a binomial distribution are $\frac{5}{6}$ and $\frac{25}{36}$ respectively. They value of $P(X=2)$ is : |
${^5C}_3\left(\frac{1}{6}\right)^3\left(\frac{5}{6}\right)^2$ ${^5C}_1\left(\frac{5}{6}\right)^3\left(\frac{1}{6}\right)^2$ ${^5C}_1\left(\frac{5}{6}\right)^2\left(\frac{1}{6}\right)^3$ ${^5C}_2\left(\frac{1}{6}\right)^2\left(\frac{5}{6}\right)^3$ |
${^5C}_2\left(\frac{1}{6}\right)^2\left(\frac{5}{6}\right)^3$ |
The correct answer is Option (4) → ${^5C}_2\left(\frac{1}{6}\right)^2\left(\frac{5}{6}\right)^3$ Mean, $E(X)=np=\frac{5}{6}$ ...(1) Variance, $Var(X)=np(1-p)=\frac{25}{36}$ ...(2) from (1) and (2), $\frac{5}{6}(1-p)=\frac{25}{36}$ $⇒P=1-\frac{5}{6}=\frac{1}{6}$ $P(X=2)={^5C}_2\left(\frac{1}{6}\right)^2\left(\frac{5}{6}\right)^3$ |