A parallel plate capacitor having cross - sectional area 'A' and separated by distance 'd' is filled by copper plate of thickness b. It's capacitance is: |
$\frac{\varepsilon_0 A}{2 d}$ $\frac{\varepsilon_0 A}{d-b}$ $\frac{2 \varepsilon_0 A}{d+\frac{b}{2}}$ $\frac{\varepsilon_0 A}{d+\frac{b}{2}}$ |
$\frac{\varepsilon_0 A}{d-b}$ |
The correct answer is Option (2) → $\frac{\varepsilon_0 A}{d-b}$ Capacitance of parallel-plate capacitors, filled by copper plate of thickness 'b' is, $C=\frac{ε_0A}{d-b}$ d = Seperation between plates A = Plate area |