Area of the triangle ABC with vertices $\left(a, a^2\right),\left(b, b^2\right)$ and $\left(c, c^2\right)$ is equal to: |
$\frac{1}{2}|a b c(a-b)(b-c)(c-a)|$ $\frac{1}{2}\left|\frac{1}{a b c}(a-b)(b-c)(c-a)\right|$ $\frac{1}{2}|(a-b)(b-c)(c-a)|$ $\frac{1}{2}[(a-b)(b-c)(c-a)]^2$ |
$\frac{1}{2}|(a-b)(b-c)(c-a)|$ |
The correct answer is Option (3) → $\frac{1}{2}|(a-b)(b-c)(c-a)|$ area = $\frac{1}{2}\begin{vmatrix}a&a^2&1\\b&b^2&1\\c&c^2&1\end{vmatrix}$ $R_1→R_1-R_2,R_2→R_2-R_3$ $=\frac{1}{2}\begin{vmatrix}a-b&a^2-b^2&0\\b-c&b^2-c^2&0\\c&c^2&1\end{vmatrix}$ $=\frac{(a-b)(b-c)}{2}\begin{vmatrix}1&a+b&0\\1&b+c&0\\c&c^2&1\end{vmatrix}$ $=\frac{(a-b)(b-c)}{2}(b+c-a-b)$ $=\frac{(a-b)(b-c)(c-a)}{2}$ |