Target Exam

CUET

Subject

-- Mathematics - Section B1

Chapter

Relations and Functions

Question:

The intervals in which the function $f(x)=2x^3+9x^2+12x+20$ is increasing is given by :

Options:

$(-2, -1)$

$(-∞, -2)$

$(-∞,-2) ∪ (-1, ∞)$

$(-∞, ∞)$

Correct Answer:

$(-∞,-2) ∪ (-1, ∞)$

Explanation:

Given function: $f(x)=2x^{3}+9x^{2}+12x+20$

Differentiate: $f'(x)=\frac{d}{dx}\big(2x^{3}+9x^{2}+12x+20\big)=6x^{2}+18x+12$

Factorize the derivative: $f'(x)=6(x^{2}+3x+2)=6(x+1)(x+2)$

Critical points are roots of $f'(x)$: $x=-2$ and $x=-1$.

Sign analysis of $f'(x)=6(x+1)(x+2)$:

For $x<-2$: $(x+2)<0,\ (x+1)<0 \Rightarrow (x+1)(x+2)>0 \Rightarrow f'(x)>0$

For $x>-1$: $(x+2)>0,\ (x+1)>0 \Rightarrow (x+1)(x+2)>0 \Rightarrow f'(x)>0$

Therefore, $f$ is increasing on $(-\infty,-2)\cup(-1,\infty)$ and decreasing on $(-2,-1)$.

Answer: $(-\infty,-2)\cup(-1,\infty)$