The intervals in which the function $f(x)=2x^3+9x^2+12x+20$ is increasing is given by : |
$(-2, -1)$ $(-∞, -2)$ $(-∞,-2) ∪ (-1, ∞)$ $(-∞, ∞)$ |
$(-∞,-2) ∪ (-1, ∞)$ |
Given function: $f(x)=2x^{3}+9x^{2}+12x+20$ Differentiate: $f'(x)=\frac{d}{dx}\big(2x^{3}+9x^{2}+12x+20\big)=6x^{2}+18x+12$ Factorize the derivative: $f'(x)=6(x^{2}+3x+2)=6(x+1)(x+2)$ Critical points are roots of $f'(x)$: $x=-2$ and $x=-1$. Sign analysis of $f'(x)=6(x+1)(x+2)$: For $x<-2$: $(x+2)<0,\ (x+1)<0 \Rightarrow (x+1)(x+2)>0 \Rightarrow f'(x)>0$ For $x>-1$: $(x+2)>0,\ (x+1)>0 \Rightarrow (x+1)(x+2)>0 \Rightarrow f'(x)>0$ Therefore, $f$ is increasing on $(-\infty,-2)\cup(-1,\infty)$ and decreasing on $(-2,-1)$. Answer: $(-\infty,-2)\cup(-1,\infty)$ |