If sec2θ +tan2θ = 3$\frac{1}{2}$, 0o < θ < 90o, then (cosθ +sinθ) is equal to |
$\frac{1+\sqrt{5}}{3}$ $\frac{2+\sqrt{5}}{3}$ $\frac{1+\sqrt{5}}{6}$ $\frac{9+2\sqrt{5}}{6}$ |
$\frac{2+\sqrt{5}}{3}$ |
sec2θ + tan2θ = 3\(\frac{1}{2}\) -----(1) and we know , sec2θ - tan2θ = 1 ------(2) Adding 1 & 2 2sec2θ = \(\frac{7}{2}\) + 1 sec2θ = \(\frac{9}{4}\) secθ = \(\frac{3}{2}\) H = 3 , B = 2 P2 + B2 = H2 P2 = 9 - 4 P = √5 Now , (cosθ +sinθ) = \(\frac{2}{3}\) + \(\frac{√5}{3}\) = \(\frac{2 + √5}{3}\) |