Solution of differential equation dy – sin x sin y dx = 0 is : |
$e^{\cos x} \tan \frac{y}{2}=c$ $e^{\cos x} \tan y=c$ cos x tan y = c cos x sin y = c |
$e^{\cos x} \tan \frac{y}{2}=c$ |
Given equation can be written as : $\frac{d y}{\sin y}=\sin x d x$ $\Rightarrow \int cosec ~y~d y=\int \sin x~ d x+c$ $\Rightarrow \log \tan \frac{y}{2}=-\cos x+c_1$ $\Rightarrow \tan \frac{y}{2}=e^{-\cos x} . e^{c_1}$ $\Rightarrow e^{\cos x} . \tan \frac{y}{2}=c$ Hence (1) is the correct answer. |