If $\alpha $ is the only real root of the equation $x^3 + bx^2 + cx + 1 = 0 (b < c)$, then the value of $tan^{-1} \alpha + tan^{-1}\left(\frac{1}{\alpha }\right)$ is equal to |
$\frac{\pi}{2}$ $-\frac{\pi}{2}$ 0 non-existent |
$-\frac{\pi}{2}$ |
Let $f(x)=x^3 + bx^2 + cx + 1$.Then, $f(0) = 1 > 0 $ and $ f(-1) = b - c< 0 $ [∵ b < c ] $⇒ \alpha $ lies between -1 and 0. $⇒ \alpha < 0 $ $⇒ tan^{-1}\left(\frac{1}{\alpha }\right) = - \pi + cot^{-1} \alpha $ $⇒ tan^{-1} \alpha + tan^{-1}\frac{1}{\alpha }= -\pi + tan^{-1}\alpha + cot^{-1} \alpha $ $⇒ tan^{-1} \alpha + tan^{-1}\frac{1}{\alpha } = - \pi + \frac{\pi}{2} = -\frac{\pi}{2}$ |