Target Exam

CUET

Subject

-- Mathematics - Section B1

Chapter

Probability

Question:

If $P(A)= 0.4, P(B) = 0.8$ and $P(A|B) = 0.6$, then $P(A∪B)$ is:

Options:

0.96

0.72

0.36

0.42

Correct Answer:

0.72

Explanation:

The correct answer is Option (2) → 0.72

$P(A)=0.4,P(B)=0.8,P(A|B)=0.6$

$P(A|B)=\frac{P(A∩B)}{P(B)}$

$⇒P(A∩B)=\frac{6}{10}×\frac{8}{10}=0.48$

$∴P(A∪B)=P(A)+P(B)-P(A∩B)$

$=0.4+0.8-0.48$

$=0.72$