If $P(A)= 0.4, P(B) = 0.8$ and $P(A|B) = 0.6$, then $P(A∪B)$ is: |
0.96 0.72 0.36 0.42 |
0.72 |
The correct answer is Option (2) → 0.72 $P(A)=0.4,P(B)=0.8,P(A|B)=0.6$ $P(A|B)=\frac{P(A∩B)}{P(B)}$ $⇒P(A∩B)=\frac{6}{10}×\frac{8}{10}=0.48$ $∴P(A∪B)=P(A)+P(B)-P(A∩B)$ $=0.4+0.8-0.48$ $=0.72$ |