Target Exam

CUET

Subject

-- Applied Mathematics - Section B2

Chapter

Calculus

Question:

If $x^2y +yx^3=5x+3 ,$ then $\frac{dy}{dx}= $

Options:

$\frac{5}{2x+3x^2-3}$

$-\frac{3x^2y-2xy}{x^2+x^3-3}$

$\frac{5-3x^2y-3x}{x^2+x^3-3}$

$\frac{5-3x^2y-2xy}{x^2+x^3-3}$

Correct Answer:

$\frac{5-3x^2y-2xy}{x^2+x^3-3}$

Explanation:

The correct answer is Option (4) → $\frac{5-3x^2y-2xy}{x^2+x^3-3}$

$x^2y +yx^3=5x+3$

Differentiating both sides w.r.t. 'x'.

$2xy+x^2\frac{dy}{dx}+3x^2y+x^3\frac{dy}{dx}=5$

$\frac{dy}{dx}(x^2+x^3)=5-2xy-3x^2y$

$⇒\frac{dy}{dx}=\frac{5-2xy-3x^2y}{x^2+x^3}$