Find $\frac{dy}{dx}$ where $y=\sin^{-1}(\frac{1-x^2}{1+x^2})$ |
$\frac{1}{1+x}$ $x(1+x^2)$ $\frac{-2}{1+x^2}$ $1/x$ |
$\frac{-2}{1+x^2}$ |
$y=\sin^{-1}(\frac{1-x^2}{1+x^2})=\frac{π}{2}-\cos^{-1}(\frac{1-x^2}{1+x^2})$ $y=\frac{π}{2}-2\tan^{-1}x$ so $\frac{dy}{dx}=\frac{-2}{1+x^2}$ |