If sin θ + cos θ = \(\sqrt {6 }\)cos θ, then value of cot θ is? |
1 0 \(\frac{√6 + 1}{5}\) \(\frac{√3 + 1}{5}\) |
\(\frac{√6 + 1}{5}\) |
sin θ + cos θ = \(\sqrt {6 }\)cos θ divide by cos θ ⇒ tan θ + 1 = \(\sqrt {6 }\) ⇒ tan θ = \(\sqrt {6 }\) - 1 ⇒ cot θ = \(\frac{1}{\sqrt {6 } - 1}\) = \(\frac{1}{\sqrt {6 } - 1}\) × \(\frac{\sqrt {6 } + 1}{\sqrt {6 } + 1}\) = \(\frac{√6 + 1}{5}\) |