Target Exam

CUET

Subject

General Aptitude Test

Chapter

Quantitative Reasoning

Topic

Trigonometry

Question:

If sin θ + cos θ = \(\sqrt {6 }\)cos θ, then value of cot θ is?

Options:

1

0

\(\frac{√6 + 1}{5}\)

\(\frac{√3 + 1}{5}\)

Correct Answer:

\(\frac{√6 + 1}{5}\)

Explanation:

sin θ + cos θ = \(\sqrt {6 }\)cos θ

divide by cos θ

⇒ tan θ + 1 = \(\sqrt {6 }\)

⇒ tan θ = \(\sqrt {6 }\) - 1

⇒ cot θ = \(\frac{1}{\sqrt {6 } - 1}\)

            = \(\frac{1}{\sqrt {6 } - 1}\) × \(\frac{\sqrt {6 } + 1}{\sqrt {6 } + 1}\)

            = \(\frac{√6 + 1}{5}\)