All positive integral powers of a symmetric matrix are : |
Skew-symmetric Diagnoal Symmetric Identity matrix |
Symmetric |
Let $A$ be a symmetric matrix, i.e., $A^T = A$ Check $(A^n)^T$ for positive integer $n$: $(A^n)^T = (A \cdot A \cdot ... \cdot A)^T = A^T \cdot A^T \cdot ... \cdot A^T = A \cdot A \cdot ... \cdot A = A^n$ Thus, $A^n$ is symmetric for all positive integers $n$. Answer: Symmetric |