The fixed cost of a new product is ₹3,000. The variable cost is estimated to be 20% of the total revenue generated on selling x units with the demand $P(x)=\left(15-\frac{5x}{36}\right)$ . The number of units(x) at which profit in maximum. |
18 36 54 27 |
54 |
The correct answer is Option (3) → 54 Revenue $(R(x))$ is, $R(x)=P(x).x$ $=x\left(15-\frac{5x}{36}\right)=15x-\frac{5x^2}{36}$ for cost function, Fixed cost = Rs. 3,000 Variable cost = 20% of revenue $VC(x)=0.2R(x)=0.2\left(15x-\frac{5x^2}{36}\right)$ $=3x-\frac{x^2}{36}$ $∴C(x)=3000+3x-\frac{x^2}{36}$ Profit, $P=\left(15x-\frac{5x^2}{36}\right)-\left(3000+3x-\frac{x^2}{36}\right)$ $=12x-\frac{x^2}{9}-3000$ for max. profit, $f'(c)=0$ $\left.\frac{dP}{dx}\right|_{x=c}=12-\frac{2c}{9}$ $⇒c=\frac{12×9}{2}=54$ |