The random variable X can take only the values 1 and 2. Given that P(X=1)=p and that $E(X^2)=E(X)+1.$ The value of p is : |
$\frac{1}{4}$ $\frac{1}{2}$ $\frac{2}{3}$ $\frac{1}{3}$ |
$\frac{1}{2}$ |
The correct answer is Option (2) → $\frac{1}{2}$ $E(X)=P(X=1).1+P(X=2).2$ $E(X)=p+(1-p).2$ $=p+2-2p$ $=2-p$ $E(X^2)=P(X=1).1^2+P(X=2).2^2$ $=p+(1-p).4$ $=4-4p+p$ $=4-3p$ $E(X^2)=E(X)+1$ (given) $4-3p=2-p+1$ $2p=1$ $p=\frac{1}{2}$ |