Let x denote the number of doublets in three throws of a pair of dice with the following probability distribution.
If value of k is equal to $\frac{m}{n}, gcd(m, n) = 1$, then $m+n$ is equal to |
8 19 16 18 |
8 |
The correct answer is Option (1) → 8 Given: Probability distribution of number of doublets in 3 throws of a pair of dice:
Use total probability = 1: $\frac{25}{72}k + \frac{15}{72}k + \frac{3}{72}k + \frac{1}{360}k = 1$ $k \left( \frac{25 + 15 + 3}{72} + \frac{1}{360} \right) = 1$ $k \left( \frac{43}{72} + \frac{1}{360} \right) = 1$ Take LCM of 72 and 360 = 360 $\frac{43}{72} = \frac{215}{360}$, so: $k \left( \frac{215 + 1}{360} \right) = 1 \Rightarrow k \cdot \frac{216}{360} = 1$ $k = \frac{360}{216} = \frac{5}{3}$ So $k = \frac{m}{n} = \frac{5}{3} \Rightarrow m + n = {8}$ |