If a, b, c are mutually unequal real numbers, then the value of \(\frac{\begin{vmatrix} 1 & a & a^3\\ 1 & b & b^3\\ 1 & c & c^3 \end{vmatrix}}{\begin{vmatrix} 1 & a & a^2\\ 1 & b & b^2\\ 1 & c & c^2 \end{vmatrix}} = \) |
– (a + b + c) a + b + c a2 + b2 + c2 a3 + b3 + c3 |
a + b + c |
\(\frac{\begin{vmatrix} 1 & a & a^3\\ 0 & b-a & b^3-a^3\\ 0 & c-a & c^3-a^3 \end{vmatrix}}{\begin{vmatrix} 1 & a & a^2\\ 0 & b-a & b^2-a^2\\ 0 & c-a & c^2-a^2 \end{vmatrix}}\) \(\frac{(b-a)(c-a)\begin{vmatrix} 1 & a & a^3\\ 0 & 1 & b^2-a^2+ab\\ 0 & 1 & c^2-a^2+ac \end{vmatrix}}{(b-a)(c-a)\begin{vmatrix} 1 & a & a^2\\ 0 & 1 & b+a\\ 0 & 1 & c+a \end{vmatrix}} =\frac{c^2+ac-b^2-ab}{(c-b)} \) $=(c+b)+a$ $=a+b+c$ Option 2 is correct. |