The points of discontinuity of the function f defined by $f(x)=\left\{\begin{array}{rc}x+2 & x ≤ 1 \\ x-2 & 1<x<2 \\ 0 & x ≥ 2\end{array}\right.$ are: |
0 and 1 1 and 2 1 2 |
1 |
The correct answer is Option (3) - 1 checking (i) at x = 1 $f(1)=1+2+3=\lim\limits_{x→1^-}f(x)$ $\lim\limits_{x→1^+}(x-2)=-1$ so $f(1)≠\lim\limits_{x→1^+}(x-2)$ point of discontinuity (ii) at x = 2 $\lim\limits_{x→2^-}(x-2)=0=f(2)=\lim\limits_{x→2^+}(0)=0$ No discontinuity at x = 1 ⇒ only one point of discontinuity |