Target Exam

CUET

Subject

-- Mathematics - Section B1

Chapter

Definite Integration

Question:

Let $T>0$ be a fixed real number. Suppose $f$ is a continuous function such that $f(x+T)=f(x)$ for all $x \in R$. If $I=\int\limits\limits_0^T f(x) d x$ then $I_1=\int\limits_3^{3+3 T} f(2 x) d x$ is

Options:

$\frac{3}{2} I$

$2 I$

$3 I$

$6 I$

Correct Answer:

$3 I$

Explanation:

We have, $I=\int\limits\limits_0^T f(x) d x$

Let, $I_1=\int\limits_3^{3+3 T} f(2 x) d x$

$\Rightarrow I_1 =\frac{1}{2} \int\limits_6^{6+6 T} f(t) d t$, where $t=2$

$\Rightarrow I_1=\frac{1}{2} \times 6 \int\limits_0^T f(t) d t $         $\left[∵ \int\limits_a^{a+n T} f(x) d x=n \int\limits_0^T f(x) d x\right]$

$\Rightarrow I_1=3 I$