CUET Preparation Today
CUET
-- Mathematics - Section B1
Vectors
If the acute angle that the vector α\hat i +β\hat j+γ\hat k makes with the plane of the two vectors 2\hat i+3\hat j-\hat k and \hat i - \hat j + 2\hat k is \tan^{-1}(\frac{1}{\sqrt{2}}), then |
α (β+ γ) = βγ β(γ+α)=γα γ(α + β) = αβ α β+βγ+γα = 0 |
α (β+ γ) = βγ |
Let O be the angle between \vec r = α\hat i +β\hat j+γ\hat k and the plane containing the vectors \vec a = 2\hat i+3\hat j-\hat k and \vec b=\hat i - \hat j + 2\hat k. Then, (π/2-θ) is the angle between \vec r and \vec a×\vec b. ∴\cos(\frac{π}{2}-θ)=\frac{\vec r.(\vec a×\vec b)}{|\vec r||\vec a×\vec b|} ⇒\sin θ=\frac{[\vec r\,\,\vec a\,\,\vec b]}{|\vec r||\vec a×\vec b|} ⇒\frac{1}{\sqrt{3}}=\frac{[\vec r\,\,\vec a\,\,\vec b]}{|\vec r|(5\sqrt{3})} [∴\tan θ=\frac{1}{\sqrt{2}}⇒\sin θ=\frac{1}{\sqrt{3}}\,and\,\vec a×\vec b=5\hat i-5\hat j-5\hat k] ⇒5|\vec r|=[\vec r\,\,\vec a\,\,\vec b] ⇒5|\vec r|=5(α-β-γ) ⇒|\vec r|=α-β-γ ⇒\sqrt{α^2+β^2+γ^2}=α-β-γ ⇒βγ=αγ+αβ⇒βγ=α (β+ γ) |