Let $\vec a=2=2\hat i+\hat j-2\hat k$ and $\vec b =\hat i +\hat j$. If $\vec c$ is a vector such that $\vec a.\vec c=|\vec c|,|\vec c-\vec a|=2\sqrt{2}$ and the angle between $\vec a ×\vec b$ and $\vec c$ is 30°. Then, $|(\vec a ×\vec b)×\vec c|$ is equal to |
$\frac{2}{3}$ $\frac{3}{2}$ 2 3 |
$\frac{3}{2}$ |
We have, $\vec a ×\vec b=2\hat i-2\hat j+\hat k$ $∴|(\vec a ×\vec b)×\vec c|=|\vec a ×\vec b||\vec c|\sin 30°=\frac{3}{2}|\vec c|$ Now, $|\vec c-\vec a|=2\sqrt{2}$ $⇒|\vec c-\vec a|^2=8$ $⇒|\vec c|^2+|\vec a|^2-2(\vec a.\vec c)=8$ $⇒|\vec c|^2+9-2|\vec c|=8$ so $|\vec c|^2-2|\vec c|+1=0$ $|\vec c|=1$ Hence, $|(\vec a ×\vec b)×\vec c|=\frac{3}{2}$ |