Consider the following data :
The best fitted trend line equation by the method of least squares is : |
$y=3.8 + 16.4 x$ $y=16.4+5.8x$ $y=3.4+6.4x$ $y=8.8+3.8x$ |
$y=8.8+3.8x$ |
The correct answer is Option (4) → $y=8.8+3.8x$ The linear regression equation is, $y=a+bx$ $∑X=0+1+2+3+4=10$ $∑Y=10+12+15+20+25=82$ $∑X^2=0^2+1^2+2^2+3^2+4^2=30$ $∑XY=(0×10)+(1×12)+(2×15)+(3×20)+(4×25)=202$ $b=\frac{n∑XY-(∑X)(∑Y)}{n∑X^2-(∑X)^2}=\frac{190}{50}=3.8$ $a=\frac{∑Y-b∑X}{n}=\frac{82-3.8×10}{5}=8.8$ |