If the function defined by $f(x) =\left\{\begin{matrix}kx^2 + 1&,\text{if x ≤ 1}\\2&,\text{if x > 1}\end{matrix}\right.$ is continuous at $x = 1$, then $k$ is equal to |
2 3 -1 1 |
1 |
The correct answer is Option (4) → 1 Given: $f(x) = \begin{cases} kx^2 + 1, & \text{if } x \leq 1 \\ 2, & \text{if } x > 1 \end{cases}$ For $f(x)$ to be continuous at $x = 1$, $\lim\limits_{x \to 1^-} f(x) = \lim\limits_{x \to 1^+} f(x) = f(1)$ From the left: $f(1^-) = k(1)^2 + 1 = k + 1$ From the right: $f(1^+) = 2$ Set equal for continuity: $k + 1 = 2 \Rightarrow k = {1}$ |