The largest open interval, in which the function $f(x)=\frac{x}{x^2+1}$ increases, is |
$(0, 1)$ $(-1, 0)$ $(-1, 1)$ $(-∞, -1) ∪ (1, ∞)$ |
$(-1, 1)$ |
The correct answer is Option (3) → $(-1, 1)$ Given: $f(x) = \frac{x}{x^2 + 1}$ Differentiate: $f'(x) = \frac{(x^2 + 1)(1) - x(2x)}{(x^2 + 1)^2} = \frac{x^2 + 1 - 2x^2}{(x^2 + 1)^2} = \frac{1 - x^2}{(x^2 + 1)^2}$ Now, $f'(x) > 0$ for increasing interval: $\frac{1 - x^2}{(x^2 + 1)^2} > 0$ Denominator is always positive. So inequality depends on numerator: $1 - x^2 > 0 \Rightarrow x^2 < 1 \Rightarrow -1 < x < 1$ |