The solution set $\frac{3(x-2)}{7}≤\frac{5(x+4)}{9}, x \in R $ is : |
$\left[\frac{97}{4}, ∞\right)$ $\left[-\frac{99}{4}, ∞\right)$ $\left[-\frac{97}{4}, ∞\right)$ $\left(-∞, \frac{97}{4}\right]$ |
$\left[-\frac{97}{4}, ∞\right)$ |
The correct answer is Option (3) → $\left[-\frac{97}{4}, ∞\right)$ $\frac{3(x-2)}{7}≤\frac{5(x+4)}{9}$ $⇒\frac{3(x-2)}{7}-\frac{5(x+4)}{9}≤0$ $⇒27(x-2)-35(x+4)≤0$ $⇒27x-35x-54-140≤0$ $⇒-8x-194≤0$ $⇒8x≥-194$ $⇒x≥-\frac{194}{8}=-\frac{97}{4}$ |