Target Exam

CUET

Subject

-- Applied Mathematics - Section B2

Chapter

Numbers, Quantification and Numerical Applications

Question:

The solution set $\frac{3(x-2)}{7}≤\frac{5(x+4)}{9}, x \in R $ is :

Options:

$\left[\frac{97}{4}, ∞\right)$

$\left[-\frac{99}{4}, ∞\right)$

$\left[-\frac{97}{4}, ∞\right)$

$\left(-∞, \frac{97}{4}\right]$

Correct Answer:

$\left[-\frac{97}{4}, ∞\right)$

Explanation:

The correct answer is Option (3) → $\left[-\frac{97}{4}, ∞\right)$

$\frac{3(x-2)}{7}≤\frac{5(x+4)}{9}$

$⇒\frac{3(x-2)}{7}-\frac{5(x+4)}{9}≤0$

$⇒27(x-2)-35(x+4)≤0$

$⇒27x-35x-54-140≤0$

$⇒-8x-194≤0$

$⇒8x≥-194$

$⇒x≥-\frac{194}{8}=-\frac{97}{4}$