The correct interpretation of Ohm's law is: (Here, $\vec{J}$ is current density, '$\sigma$' is conductivity, $\vec{E}$ is electric field and '$\rho$' is resistivity.) |
$\vec{E}=\sigma \vec{J}$ $\vec{E}=\vec{J}_\rho$ $\vec{J}=\rho \vec{E}$ $\vec{J}=\frac{\sigma}{\vec{E}}$ |
$\vec{E}=\vec{J}_\rho$ |
The correct answer is Option (2) → $\vec{E}=\vec{J}_\rho$ In terms of resistivity (ρ), which is the inverse of conductivity $ρ=1/σ$, the law can be $\vec J=σ\vec E⇔\vec E=\vec Jρ$ |