Match List-I with List-II.
Choose the correct answer from the options given below : | ||||||||||||||||||||
A-III, B-II, C-I, D-IV A-II, B-I, C-IV, D-III A-III, B-IV, C-I, D-II A-I, B-III, C-IV, D-II |
A-III, B-IV, C-I, D-II |
The correct answer is Option (3) → A-III, B-IV, C-I, D-II (A) $\frac{d(xy+x+y)}{dx}=x\frac{dy}{dx}y+1+\frac{dy}{dx}$ $=(x+1)\frac{dy}{dx}+(y+1)$ $\frac{dy}{dx}=-\frac{(y+1)}{(x+1)}$ $y'(1,0)=-\frac{(0+1)}{(1+1)}=\frac{1}{2}$ (B) $\frac{d(x^x+y)}{dx}=0$ $x^x(ln\,x+1)+\frac{dy}{dx}=0$ $⇒\frac{dy}{dx}=-x^x(ln\,x+1)$ $y'(1,1)=-1'(ln\,1+1)=-1$ (C) $\frac{d(x^2+x\log y)}{dx}=2x+\log y+(\frac{x}{y})\frac{dy}{dx}$ $⇒\frac{dy}{dx}=\frac{-y}{x}×(2x+\log y)$ $⇒f'(1,e)=-\frac{e}{1}(2+1)=-3e$ (D) $\frac{d(x^3y^2)}{dx}=3x^2y^2+2x^3y\frac{dy}{dx}=0$ $\frac{dy}{dx}=-\frac{x^2y^2}{x^3y}$ $f'(2,2)=-\frac{3}{2}$ |