Target Exam

CUET

Subject

-- Applied Mathematics - Section B2

Chapter

Numbers, Quantification and Numerical Applications

Question:

The point at which the function $'f'$ given by $f(x)=(x-2)^4(x+1)^3$ has point of inflexion is :

Options:

$x=\frac{2}{7}$

$x=2$

$x=-1$

$x=-2$

Correct Answer:

$x=-1$

Explanation:

The correct answer is Option (3) → $x=-1$

$f(x)=(x-2)^4(x+1)^3$

$f'(x)=4(x-2)^3(x+1)^3+3(x-2)^4(x+1)^2$

$=(x-2)^3(x+1)^2(7x-2)$

$f''(x)=(x-2)^2(x+1)(7x-2)(12x-15)$

for point of inflection, $f''(x)=0$

$(x+1)=0⇒x=-1$