The value of $\begin{vmatrix}\log_510&2\\2&\log_{10}5\end{vmatrix}$ is |
-3 $\frac{-7}{2}$ 1 0 |
-3 |
The correct answer is Option (1) → -3 Determinant = $\begin{vmatrix} \log_{5}{10} & 2 \\ 2 & \log_{10}{5} \end{vmatrix}$ Determinant $= \log_{5}{10}\cdot \log_{10}{5} - (2\cdot 2)$ Since $\log_{a}{b}=\frac{1}{\log_{b}{a}}$, we have $\log_{5}{10}=\frac{1}{\log_{10}{5}}$ So, $\log_{5}{10}\cdot \log_{10}{5} = 1$ Thus, Determinant $= 1 - 4 = -3$ |