Target Exam

CUET

Subject

-- Applied Mathematics - Section B2

Chapter

Financial Mathematics

Question:

The amount should be deposited at the end of every 6 months to accumulate Rs.50,000 in 8 years if money is worth 6% p.a. compounded semiannually, is: (Given $(1.03)^{16} = 1.6047$)

Options:

Rs. 3432.53

Rs. 2783.08

Rs. 2480.57

Rs. 2149.93

Correct Answer:

Rs. 2480.57

Explanation:

The correct answer is Option (3) → Rs. 2480.57

Given: Future value $A = 50,000$

Rate per half-year $i = \frac{6}{2}\% = 3\% = 0.03$

Number of periods $n = 8 \times 2 = 16$

Formula for future value of annuity (deposit each period):

$A = R \cdot \frac{(1+i)^n - 1}{i}$

$50,000 = R \cdot \frac{(1.03)^{16} - 1}{0.03}$

$(1.03)^{16} = 1.6047 \ \Rightarrow \ (1.6047 - 1) = 0.6047$

$\frac{0.6047}{0.03} = 20.1567$

$50,000 = R \cdot 20.1567$

$R = \frac{50,000}{20.1567} \approx 2480.6$

${R \approx 2481 \ \text{rupees}}$