The amount should be deposited at the end of every 6 months to accumulate Rs.50,000 in 8 years if money is worth 6% p.a. compounded semiannually, is: (Given $(1.03)^{16} = 1.6047$) |
Rs. 3432.53 Rs. 2783.08 Rs. 2480.57 Rs. 2149.93 |
Rs. 2480.57 |
The correct answer is Option (3) → Rs. 2480.57 Given: Future value $A = 50,000$ Rate per half-year $i = \frac{6}{2}\% = 3\% = 0.03$ Number of periods $n = 8 \times 2 = 16$ Formula for future value of annuity (deposit each period): $A = R \cdot \frac{(1+i)^n - 1}{i}$ $50,000 = R \cdot \frac{(1.03)^{16} - 1}{0.03}$ $(1.03)^{16} = 1.6047 \ \Rightarrow \ (1.6047 - 1) = 0.6047$ $\frac{0.6047}{0.03} = 20.1567$ $50,000 = R \cdot 20.1567$ $R = \frac{50,000}{20.1567} \approx 2480.6$ ${R \approx 2481 \ \text{rupees}}$ |