Calculate the shaded area as given below : |
$\frac{8}{3}sq.units $ $\frac{8}{5}sq.units $ $3\, sq.units $ $8\, sq.units $ |
$\frac{8}{3}sq.units $ |
The correct answer is option (1) → $\frac{8}{3}$ sq.units area is symmetric about x so computing one sides area and multiplying by 2 area = $2×\left(\int\limits_{-2}^2\frac{x}{2}+1dx-\int\limits_0^2\sqrt{2x}dx\right)$ $=2\left[\left[\frac{x^2}{4}+x\right]_{-2}^2-\left[\frac{2}{3}\sqrt{2}×\sqrt{x}\right]_0^1\right]$ $=2\left[4-\frac{2}{3}\sqrt{2}×2\sqrt{2}\right]$ $=2[\frac{4}{3}]=\frac{8}{3}$ sq. units |