The half life of a radioactive substance is 30 s. Calculate the time taken for the sample to decay to $\frac{3}{4}th$ its initial value. |
30 s 20 s 40 s 60 s |
60 s |
The correct answer is Option (4) → 60 s To calculate the time taken for a radioactive sample to decay $\frac{3}{4}$ of its initial value - $N(t)=N_0e^{-λt}$ [Radioactive Decay formula] $\frac{N}{N_0}=\frac{1}{4}=e^{-λt}$ [given] $⇒\frac{1}{4}=e^{-λt}$ The decay constant $λ$ is related to half-life ($T_{1/2}$) $λ=\frac{ln(2)}{T_{1/2}}$ $λ=\frac{ln(2)}{30}≃0.0231s^{-1}$ $ln(\frac{1}{4})=-0.0231t$ $=-1.386=-0.0231×t$ $t=60s$ |