The minimum value of $x^2+\frac{1}{x}$ is: |
$\left(\frac{1}{2}\right)^{\frac{2}{3}}+(2)^{\frac{1}{3}}$ $6+(2)^{\frac{1}{3}}$ $\left(\frac{1}{2}\right)^{\frac{1}{3}}+5$ $(4)^{\frac{2}{3}}+2$ |
$\left(\frac{1}{2}\right)^{\frac{2}{3}}+(2)^{\frac{1}{3}}$ |
The correct answer is Option (1) → $\left(\frac{1}{2}\right)^{\frac{2}{3}}+(2)^{\frac{1}{3}}$ Differentiate $f(x)$ with respect to $x$, $f'(x)=\frac{d}{dx}(x^2+\frac{1}{x})$ $=2x-\frac{1}{x^2}$ To find critical points, $f'(x)=0$ $2x-\frac{1}{x^2}=0$ $2x^3=1$ $x^3=\frac{1}{2}$ $x=(\frac{1}{2})^{\frac{1}{3}}$ Taking second derivative test $f''(x)=\frac{d}{dx}(2x-\frac{1}{x^2})$ $=2+\frac{2}{x^3}>0$ Substituting $x=\frac{1}{\sqrt[3]{2}}$ $f\left(\frac{1}{\sqrt[3]{2}}\right)=\left(\frac{1}{\sqrt[3]{2}}\right)^2+\frac{1}{\frac{1}{\sqrt[3]{2}}}$ $=\frac{1}{\sqrt[3]{4}}+\sqrt[3]{2}$ $=\left(\frac{1}{2}\right)^{\frac{2}{3}}+(2)^{\frac{1}{3}}$ |