A pure silicon crystal with $5 × 10^{28}$ atoms $m^{-3}$ has $n_i=1.5 × 10^{16} m^{-3}$. It is doped with a concentration of 1 in $10^5$ pentavalent atoms, the number density of holes (per $m^3$) in the doped semiconductor will be: |
$4.5 × 10^3$ $4.5 × 10^8$ $\left(\frac{10}{3}\right)10^{12}$ $\left(\frac{10}{3}\right)10^{7}$ |
$4.5 × 10^8$ |
The correct answer is Option (2) → $4.5 × 10^8$ 1 Atom of Si doped out of $10^6$ atoms ⇒ In $5×10^{28}$ atoms Net Doned = $\frac{5×10^{28}}{10^6}=5×10^{22}$ atoms The number of holes (p) is given by, ${n_i}^2=n×p$ $p=\frac{{n_i}^2}{n}=\frac{(1.5×10^{16})^2}{5×10^{22}}=4.5×10^8$ |