The area of triangle with vertices P, Q, R is given by (where $\vec{AB}$ = position vector of point B - position vector of point A) |
$\frac{1}{8}|\vec{PR}×\vec{PQ}|$ $\frac{1}{4}|\vec{PR}×\vec{PQ}|$ $\frac{1}{2}|\vec{PQ}×\vec{PR}|$ $|\vec{PQ}×\vec{PR}|$ |
$\frac{1}{2}|\vec{PQ}×\vec{PR}|$ |
The correct answer is Option (3) → $\frac{1}{2}|\vec{PQ}×\vec{PR}|$ $\text{Area of } \triangle PQR = \frac{1}{2} \left| \mathbf{PQ} \times \mathbf{PR} \right|$ $\mathbf{PQ} = \mathbf{Q} - \mathbf{P}$ $\mathbf{PR} = \mathbf{R} - \mathbf{P}$ Substitute the vectors: $= \frac{1}{2} \left| (\mathbf{Q} - \mathbf{P}) \times (\mathbf{R} - \mathbf{P}) \right|$ |