Match List-I with List-II Where R is set of real numbers
Choose the correct answer from the options given below: |
(A)-(IV), (B)-(II), (C)-(I), (D)-(III) (A)-(II), (B)-(IV), (C)-(I), (D)-(III) (A)-(II), (B)-(IV), (C)-(III), (D)-(I) (A)-(IV), (B)-(II), (C)-(III), (D)-(I) |
(A)-(II), (B)-(IV), (C)-(I), (D)-(III) |
The correct answer is Option (2) → (A)-(II), (B)-(IV), (C)-(I), (D)-(III)
Explanation: (A) $f:\mathbb{R} \to \mathbb{R}$, $f(x)=x^{4}$ For $x$ and $-x$, $f(x)$ is the same, so it is many-one. The range is $[0,\infty)$, which is a subset of $\mathbb{R}$, so not onto. Matches (II). (B) $f:\mathbb{R} \to [0,\infty)$, $f(x)=x^{4}$ Still many-one because $x$ and $-x$ map to the same value, but now the range exactly matches the codomain $[0,\infty)$, so it is onto. Matches (IV). (C) $f:[0,\infty) \to \mathbb{R}$, $f(x)=x^{4}$ For $x\ge0$, $f$ is strictly increasing, so one-one. The range is $[0,\infty)$, which is a subset of $\mathbb{R}$, so not onto. Matches (I). (D) $f:[0,\infty) \to [0,\infty)$, $f(x)=x^{4}$ For $x\ge0$, $f$ is strictly increasing, so one-one. The range is $[0,\infty)$, which matches the codomain, so onto. Matches (III). |