Solution of the differential equation $\frac{dy}{dx}+ay=e^{mx}$ is : |
$(a+m)y=e^{mx}+Ce^{-ax}$ $y=e^{mx}+Ce^{-ax}$ $(a+m)y=me^{mx}+C$ $y.e^{ax}=me^{mx}+C$ |
$(a+m)y=e^{mx}+Ce^{-ax}$ |
The correct answer is option (1) → $(a+m)y=e^{mx}+Ce^{-ax}$ $I.F.=e^{∫adx}=e^{ax}$ multiplying eq. with I.F. and differentiating wrt (x) $∫e^{ax}\frac{dy}{dx}+ae^{ax}ydx=∫e^{(a+m)x}dx$ $⇒ye^{ax}=\frac{e^{(a+m)x}}{(a+m)}+C$ $⇒y(a+m)=e^{mx}+c'e^{-ax}$ |