Target Exam

CUET

Subject

-- Mathematics - Section A

Chapter

Differential Equations

Question:

Solution of the differential equation $\frac{dy}{dx}+ay=e^{mx}$ is :

Options:

$(a+m)y=e^{mx}+Ce^{-ax}$

$y=e^{mx}+Ce^{-ax}$

$(a+m)y=me^{mx}+C$

$y.e^{ax}=me^{mx}+C$

Correct Answer:

$(a+m)y=e^{mx}+Ce^{-ax}$

Explanation:

The correct answer is option (1) → $(a+m)y=e^{mx}+Ce^{-ax}$

$I.F.=e^{∫adx}=e^{ax}$

multiplying eq. with I.F. and differentiating wrt (x)

$∫e^{ax}\frac{dy}{dx}+ae^{ax}ydx=∫e^{(a+m)x}dx$

$⇒ye^{ax}=\frac{e^{(a+m)x}}{(a+m)}+C$

$⇒y(a+m)=e^{mx}+c'e^{-ax}$