If the ratio of maximum to minimum resultant intensity in interference pattern of two waves is 25 : 4, then, ratio of amplitudes two waves is : |
$5: 2$ $2 : 5$ $7 : 3$ $49 : 9$ |
$7 : 3$ |
The correct answer is option (3) : $7 : 3$ $\frac{I_{max}}{I_{min}}=\frac{(\sqrt{l_1}+\sqrt{l_2})^2}{(\sqrt{l_1}-\sqrt{l_2})^2}$ $\frac{25}{4}=\left(\frac{\sqrt{l_1}+\sqrt{l_2}}{\sqrt{l_1}-\sqrt{l_2}}\right)^2$ $\frac{5}{2}=\left(\frac{\sqrt{l_1}+\sqrt{l_2}}{\sqrt{l_1}-\sqrt{l_2}}\right)$ $3\sqrt{l_1}=7\sqrt{l_2}⇒\frac{l_1}{l_2}=\frac{49}{9}$ $I∝A^2$ $⇒A ∝\sqrt{l}$ $⇒\frac{A_1}{A_2}=\sqrt{\frac{l_1}{l_2}}=\sqrt{\frac{49}{9}}=\frac{7}{3}$ |