If $4 - 2 \sin^2 \theta - 5 \cos \theta = 0, 0^\circ < \theta < 90^\circ$, then the value of $\cos \theta - \tan \theta$ is: |
$\frac{1 + 2 \sqrt 3}{2}$ $\frac{2 - \sqrt 3}{2}$ $\frac{2 + \sqrt 3}{2}$ $\frac{1 - 2 \sqrt 3}{2}$ |
$\frac{1 - 2 \sqrt 3}{2}$ |
We are given that , 4 - 2 sin²θ - 5 cosθ= 0 { using sin²θ + cos²θ = 1 } 4 - 2 ( 1 - cos²θ ) - 5 cosθ= 0 2cos²θ - 5 cosθ + 2 = 0 2cos²θ - 4 cosθ - cosθ + 2 = 0 2 cosθ ( cosθ - 2 ) - 1 ( cosθ - 2 ) = 0 Either ( 2cosθ - 1 ) = 0 Or ( cosθ - 2 ) = 0 ( cosθ - 2 ) = 0 is not possible. So, ( 2cosθ - 1 ) = 0 cosθ = \(\frac{1}{2}\) { we know , cos60º = \(\frac{1}{2}\) } So, θ = 60º Now, cosθ - tanθ = cos60º - tan60º = \(\frac{1}{2}\) - \(\sqrt { 3}\) = \(\frac{1 - 2√3}{2}\)
|