If $\left(2 x-\frac{3}{x}\right)=2$, then what is the value of $\left(16 x^4+\frac{81}{x^4}\right) ?$ |
328 180 184 220 |
184 |
If $(x - \frac{1}{x}) = n$ (x2 + x-2) = (n)2 + 2 = b = (x4 + x-4) = b2 - 2 According to the question, $\left(2 x-\frac{3}{x}\right)=2$ $\left(4 x^2+\frac{9}{x^2}\right) $ = (2)2 + 2 × 2 × 3 = 16 $\left(16 x^4+\frac{81}{x^4}\right)$ = 162 - 2 × 2 × 3 × 2 × 3 $\left(16 x^4+\frac{81}{x^4}\right)$ = 256 - 72 = 184 |