$\lim\limits_{n \rightarrow \infty} \frac{n^k \sin ^2 n !}{n+2}$, 0 < k < 1, is equal to: |
∞ 1 0 -1 |
0 |
$\lim\limits_{n \rightarrow \infty} \frac{n^k \sin ^2 n !}{n+2}=\lim\limits_{n \rightarrow \infty} \frac{n^k \sin ^2 n !}{n(1+2 / n)}$ $=\lim\limits_{n \rightarrow \infty} \frac{\sin ^2(n !)}{n^{1-k}\left(1+\frac{2}{n}\right)}=\frac{\text { a finite quantity }}{\infty}$ [Since sin2 n! always lies between 0 and 1. Also, since 1 - k > 0, hence n1 - k → ∞ Hence (3) is the correct answer. as n→ ∞] |