In Young's double slit experiment, the ratio of slit widths is 4 : 1. The intensity ratio in the interference pattern would be: |
1 : 2 1 : 3 9 : 1 1 : 9 |
9 : 1 |
The correct answer is Option (3) → 9 : 1 Ratio of the slit width, $\frac{W_1}{W_2}=\frac{4}{1}$ let $l_1,l_2$ are intensity of light coming from two slits - As, $I∝W$ I = intensity $∴\frac{I_1}{I_2}=\frac{4}{1}$ $∴\frac{I_{max}}{I_{min}}=\frac{(\sqrt{I_1}+\sqrt{I_2})^2}{(\sqrt{I_1}-\sqrt{I_2})^2}=\frac{(\sqrt{\frac{I_1}{I_2}}+1)^2}{(\sqrt{\frac{I_1}{I_2}}-1)^2}$ $=\frac{(\sqrt{4}+1)^2}{(\sqrt{4}-1)^2}=\frac{9}{1}$ |