Derivative of $\sin(\cos(x^2))$ with respect to $x^2 $ is : |
$-2xcos (sin(x^2))$ $-2xcos (cos(x^2))sin(x^2)$ $-cos (cos(x^2))sin(x^2)$ $cos (cos(x^2))sin(x^2)$ |
$-cos (cos(x^2))sin(x^2)$ |
The correct answer is Option (3) → $-\cos (\cos(x^2))\sin(x^2)$ $y=\sin(\cos(x^2))$, $z=x^2$ $\frac{dy}{dx}=\cos(\cos(x^2))(-\sin(x^2))2x$ $\frac{dz}{dx}=2x$ $⇒\frac{dy}{dz}=-\cos (\cos(x^2))\sin(x^2)$ |