The magnetic dipole moment associated with an atom due to orbital motion of an electron in fourth stationary orbit of the hydrogen atom is: |
$9.27 \times 10^{-24} A m^2$ $3.708 \times 10^{-23} A m^2$ $2.781 \times 10^{-23} A m^2$ $18.54 \times 10^{-24} A m^2$ |
$3.708 \times 10^{-23} A m^2$ |
The correct answer is Option (2) → $3.708 \times 10^{-23} A m^2$ For an electron in the n-th orbit, $I=\frac{e}{T}=\frac{e}{\frac{2\pi r_n}{v_n}}=\frac{ev_n}{\frac{2\pi r_n}{v_n}}$ Area of circular orbit, $A=\pi{r_n}^2$ $∴μ_n=IA=\frac{ev_n}{2\pi r_n}×\pi{r_n}^2=\frac{eh}{4\pi m}$ $μ_n=\frac{(1.6×10^{-19})(6.63×10^{-34})}{4×(9.11×10^{-31})×(3.14)}$ $=3.708×10^{-23}Am^2$ |