If $A =\begin{bmatrix}0&a&2\\-2&0&b\\-2&2&c\end{bmatrix}$ is a skew symmetric matrix, then the value of $(a+b+c)^3$ is |
1 0 8 2 |
0 |
The correct answer is Option (2) → 0 For a skew symmetric matrix $A$, we have $A^T = -A$ and all diagonal elements are 0. Given matrix: $A = \begin{bmatrix} 0 & a & 2 \\ -2 & 0 & b \\ -2 & 2 & c \end{bmatrix}$ Since $A$ is skew symmetric: - Diagonal elements: $0, 0, 0 \Rightarrow c = 0$ - Off-diagonal elements satisfy $a_{ij} = -a_{ji}$: $a = -(-2) = 2$ $b = -2$ Sum: $a + b + c = 2 + (-2) + 0 = 0$ $(a + b + c)^3 = 0^3 = 0$ |