The angular velocity of a particle moving in a circle of radius 50 cm is increased in 5 min from 100 revolutions per minute to 400 revolutions per minute. Find the tangential acceleration of the particle. |
60 m/s2 $\frac{\pi}{30}$ m/s2 $\frac{\pi}{15}$ m/s2 $\frac{\pi}{60}$ m/s2 |
$\frac{\pi}{60}$ m/s2 |
$\alpha \propto \frac{\omega_2 - \omega_1}{t}$ = $\frac{400-100}{5}$ = 60 rev/min2 = $\frac{60\times 2\pi}{60^2} = \frac{2 \pi}{60}$ rad/sec2 $a_t = \alpha r = \frac{2 \pi}{60} \frac{50}{100}$ = $\frac{\pi}{60}$m/s2 |