If x > 0 and $x^4 + \frac{1}{x^4} = 2207$, what is the value of $( x^5 + \frac{1}{x^5})$ |
15127 15134 15141 15130 |
15127 |
We know that, x5 + $\frac{1}{x^5}$ = (x2 + $\frac{1}{x^2}$) × (x3 + $\frac{1}{x^3}$) – (x + $\frac{1}{x}$) If x4 + \(\frac{1}{x^4}\) = a then x2 + \(\frac{1}{x^2}\) = \(\sqrt {a + 2}\) = b and x + \(\frac{1}{x}\) = \(\sqrt {b + 2}\) If x > 0 If $x^4 + \frac{1}{x^4} = 2207$ what is the value of $( x^5 + \frac{1}{x^5})$ If $x^4 + \frac{1}{x^4} = 2207$ then, x2 + \(\frac{1}{x^2}\) = \(\sqrt {2207 + 2}\) = 47 and x + \(\frac{1}{x}\) = \(\sqrt {47 + 2}\) = 7 We know that If x + \(\frac{1}{x}\) = n then, $x^3 +\frac{1}{x^3}$ = n3 - 3 × n $x^3 +\frac{1}{x^3}$ = 73 - 3 × 7 = 322 So, x5 + $\frac{1}{x^5}$ = 47 × 322 – 7 x5 + $\frac{1}{x^5}$ = 15127 |