Match List I with List II
Choose the correct answer from the options given below |
A-IV, B-I, C-III, D-II A-III, B-IV, C-I, D-II A-II, B-I, C-III, D-IV A-IV, B-III, C-I, D-II |
A-III, B-IV, C-I, D-II |
The correct answer is option 2. A-III, B-IV, C-I, D-II.
Let us go through a detailed explanation of how the units of rate constants for reactions of different orders are derived using the general form of rate laws. Rate Law: For a reaction: \(\text{Rate} = k[\text{Reactant}_1]^{x}[\text{Reactant}_2]^{y}...\) The overall reaction order \( n \) is the sum of the exponents \( x + y + ... \). Units of the Rate Constant: The rate of reaction generally has units of concentration per time, i.e., \( \text{mol/L/s} \) or \( \text{mol} \cdot L^{-1} \cdot s^{-1} \). The units of the rate constant \( k \) can be derived based on the reaction order \( n \), using the formula: \(k = \frac{\text{rate}}{[\text{concentration}]^n}\) Where \( n \) is the order of the reaction. This leads to the following general expression for the units of \( k \): \(\text{Units of } k = \frac{(\text{mol} \cdot L^{-1} \cdot s^{-1})}{(\text{mol} \cdot L^{-1})^n}\) Let us now look at the order of reaction in the list I of the match: A. Second Order Reaction : For a second-order reaction** (\( n = 2 \)): \(\text{Units of } k = \frac{(\text{mol} \cdot L^{-1} \cdot s^{-1})}{(\text{mol} \cdot L^{-1})^2}\) Simplifying this gives: \(k = \text{mol}^{-1} \cdot L \cdot s^{-1}\) Thus, the units of \( k \) for a second-order reaction are \( \mathbf{mol^{-1} \cdot L \cdot s^{-1}} \) (III). B. Fourth Order Reaction: For a fourth-order reaction (\( n = 4 \)): \(\text{Units of } k = \frac{(\text{mol} \cdot L^{-1} \cdot s^{-1})}{(\text{mol} \cdot L^{-1})^4}\) Simplifying this gives: \(k = \text{mol}^{-3} \cdot L^3 \cdot s^{-1}\) Thus, the units of \( k \) for a fourth-order reaction are \( \mathbf{mol^{-3} \cdot L^3 \cdot s^{-1}} \) (IV). C. First Order Reaction: For a first-order reaction (\( n = 1 \)): \(\text{Units of } k = \frac{(\text{mol} \cdot L^{-1} \cdot s^{-1})}{(\text{mol} \cdot L^{-1})^1}\) Simplifying this gives: \(k = s^{-1}\) Thus, the units of \( k \) for a first-order reaction are \( \mathbf{s^{-1}} \) (I). D. Third Order Reaction: For a third-order reaction (\( n = 3 \)): \(\text{Units of } k = \frac{(\text{mol} \cdot L^{-1} \cdot s^{-1})}{(\text{mol} \cdot L^{-1})^3}\) Simplifying this gives: \(k = \text{mol}^{-2} \cdot L^2 \cdot s^{-1}\) Thus, the units of \( k \) for a third-order reaction are \( \mathbf{mol^{-2} \cdot L^2 \cdot s^{-1}} \) (II). |