The general solution of the differential equation $xdy + ydx + 2x^3 dx = 0$, is |
$x+y+x^4=C$ $xy+\frac{1}{2} x^4=C$ $x+y+\frac{1}{2} x^4=0$ $x y-\frac{1}{2} x^4=C$ |
$xy+\frac{1}{2} x^4=C$ |
We have, $d y+y d x+2 x^3 d x =0$ $\Rightarrow d(x y)+2 x^3 d x=0 \Rightarrow d(x y)+\frac{1}{2} d\left(x^4\right)=0$ On integration, we get $x y+\frac{1}{2} x^4=C$, which is the required solution of the given differential equation. |