Match List I with List II
Choose the correct answer from the options given below: |
A-I, B-II, C-III, D-IV A-I, B-III, C-II, D-IV A-III, B-I, C-IV, D-II A-III, B-IV, C-I, D-II |
A-III, B-I, C-IV, D-II |
The correct answer is option 3. A-III, B-I, C-IV, D-II.
To match the transition metal ions in List I with their corresponding values of magnetic moment (in Bohr magneton, BM) in List II let us first find out the values of each ion: We know, Magnetic moment, \(\mu = \sqrt{n(n + 2)}BM\), where n = number of unpaired electrons Iron(II) ion (\(Fe^{2+}\)) has a \(3d^6\) configuration with four unpaired electrons \((n)\) in its d-orbitals. So, the magnetic moment will be: \(\mu = \sqrt{4(4 + 2)}BM\) or, \(\mu = \sqrt{24}BM\) or, \(\mu = 4.90 BM\) B. \(Ni^{2+}\) (Nickel(II) ion) Nickel(II) ion (\(Ni^{2+}\)) has a \(3d^8\) configuration with two unpaired electrons \((n)\) in its d-orbitals. So, the magnetic moment will be: \(\mu = \sqrt{2(2 + 2)}BM\) or, \(\mu = \sqrt{8}BM\) or, \(\mu = 2.84 BM\) C. \(Mn^{2+}\) (Manganese(II) ion) Manganese(II) ion (\(Mn^{2+}\)) has a \(3d^5\) configuration with five unpaired electrons \((n)\) in its d-orbitals. So, the magnetic moment will be: \(\mu = \sqrt{5(5 + 2)}BM\) or, \(\mu = \sqrt{35}BM\) or, \(\mu = 5.92 BM\) D. \(Zn^{2+}\) (Zinc(II) ion) Zinc(II) ion (\(Zn^{2+}\)) has a \(3d^{10}\) configuration with zero unpaired electrons \((n)\) in its d-orbitals. So, the magnetic moment will be: \(\mu = 0 BM\) So, the correct match is option 3. A-III, B-I, C-IV, D-II |